CRISPR-Target Applications in Gene Editing: Precision Engineering Across Biomedical Frontiers

CRISPR-Target Applications in Gene Editing: Precision Engineering Across Biomedical Frontiers1. Therapeutic Genome Editing

A. Genetic Disease Correction

  • In Vivo Base Editing: Liver-directed LNP delivery of ABE8.8 mRNA corrects SERPINA1 E342K mutation in α1-antitrypsin deficiency, achieving 30% editing efficiency and restoring protease inhibitor function .
  • Prime Editing: Dual AAV vectors deliver pegRNA-nCas9-M-MLV to correct CFTR ΔF508 in cystic fibrosis organoids, restoring chloride channel activity .

B. Cancer Immunotherapy

  • CAR-T EngineeringEx vivo CRISPR knockout of PDCD1 and TCR genes enhances anti-tumor activity .
  • Tumor-Specific Targeting: gRNAs targeting BCL11A enhancer induce fetal hemoglobin in sickle cell disease .

Suggested Figure 1In Vivo Base Editing Workflow
LNP encapsulation → Hepatocyte delivery → A→G conversion → Functional protein restoration.


2. Functional Genomics & Disease Modeling

A. High-Throughput Screening

  • CRISPRko/i/a Libraries: Genome-scale gRNA pools identify synthetic lethal interactions (e.g., PARP1 knockout sensitizing BRCA1-mutant tumors) .
  • Single-Cell CRISPR Screens: Paired scRNA-seq and gRNA barcoding reveal cell-type-specific gene networks .

B. Organoid Engineering

  • Multi-Gene Editing: Simultaneous targeting of APCKRAS, and TP53 generates colorectal cancer organoids for drug testing .

Suggested Figure 2CRISPR Screening Pipeline
gRNA library → Lentiviral delivery → Phenotypic selection → NGS deconvolution → Hit identification.


3. Diagnostic Applications

A. Infectious Disease Detection

  • SHERLOCKv2: Cas13a collateral cleavage of fluorescent RNA reporters detects Zika virus at 2 aM sensitivity .
  • DETECTR: Cas12a-based lateral flow assay identifies HPV16 in cervical swabs with 95% concordance .

B. Cancer Liquid Biopsies

  • CRISPR-Cas9-NSG: Enrichment of EGFR T790M mutations in ctDNA improves detection limit to 0.01% allele frequency .

Suggested Figure 3CRISPR Diagnostics Workflow
Sample → Cas13/Cas12 activation → Collateral cleavage → Fluorescent/lateral flow readout.


4. Agricultural & Environmental Engineering

A. Crop Improvement

  • Multiplex EditingCas12a-mediated knockout of OsSWEET14 confers bacterial blight resistance in rice .
  • Climate ResilienceCas9-edited ZmCCT gene reduces photoperiod sensitivity in maize .

B. Bioremediation

  • Microbial Pathway EngineeringPseudomonas putida edited for enhanced polyethylene degradation .

5. Advanced Delivery Strategies

Delivery System Application Editing Efficiency
AAV Vectors Inherited retinal diseases 15–40% in photoreceptors
Gold Nanoparticles Skin regeneration 25–60% in fibroblasts
Magnetofection Brain tumor editing 18% in glioma models

Suggested Figure 4Nanoparticle Delivery
AuNP-CRISPR complex → Cellular uptake → Endosomal escape → Genome editing.


6. Emerging Frontiers

A. Epigenome Editing

  • dCas9-DNMT3A: Methylates FMR1 promoter to silence fragile X syndrome alleles .
  • CRISPRa/i: Activates VEGF for ischemic heart repair .

B. Chromosome Engineering

  • CRISPR-C: Programmable telomere fusion induces synthetic lethality in cancer .

C. In Utero Editing

  • Base Editing: Corrects COL1A1 mutation in osteogenesis imperfecta murine model .

Conclusion

CRISPR-targeted editing transforms biomedicine through:

  1. Precision Therapeutics: Single-base correction for monogenic diseases.
  2. Functional Discovery: Genome-scale screens mapping disease pathways.
  3. Point-of-Care Diagnostics: Field-deployable pathogen detection.
  4. Sustainable Agriculture: Climate-resilient crop engineering.
    With advances in delivery (LNPs, AAVs) and editing fidelity (base/prime editing), CRISPR therapeutics will enter routine clinical practice within this decade.

Data Source: Publicly available references.
Contactchuanchuan810@gmail.com

发表评论

您的邮箱地址不会被公开。 必填项已用 * 标注

滚动至顶部