RNA Velocity-RNAVelocity

 

RNA Velocity: Computational Inference of Cellular State Dynamics from Single-Cell Transcriptomics

RNA velocity is a computational method that leverages single-cell transcriptomic data to infer the direction and speed of cellular state transitions by analyzing the dynamics of unspliced and spliced mRNA. The core principles are outlined below:

Biological Basis

mRNA biogenesis involves two key stages: transcription (yielding unspliced pre-mRNA) and splicing (producing mature mRNA). Since unspliced mRNA precedes spliced mRNA, the temporal disparity between them encodes kinetic information about cellular state transitions. By quantifying deviations from steady-state assumptions in the ratio of these mRNA types, the rate of gene expression changes can be estimated.

Mathematical Models

Differential equations are employed to model transcriptional kinetics:

  • Deterministic models (e.g., velocyto):‌ Assume cells are in steady state, estimating splicing rate (β) and degradation rate (γ) via linear regression. Velocity is derived from residuals between observed values and steady-state ratios.
  • Stochastic models:‌ Incorporate probabilistic events to describe transcription, improving robustness through first- and second-order moment analysis.
  • Dynamical models (e.g., scVelo):‌ Use expectation-maximization (EM) algorithms to iteratively optimize parameters (e.g., transcription rate α, splicing rate β, degradation rate γ) and infer latent time, reflecting differentiation progression.

Applications

  • Cell fate prediction:‌ Velocity vector fields reveal differentiation trajectories (e.g., from progenitors to terminal states).
  • Key gene identification:‌ Regulatory drivers (e.g., transcription factors) of state transitions are pinpointed.
  • Temporal scaling:‌ Vector magnitude indicates differentiation speed, while coherence evaluates prediction confidence.

Tools & Limitations

  • Tools:‌ velocyto (steady-state assumption) and scVelo (dynamic modeling, adaptable to heterogeneous populations).
  • Limitations:‌ Sensitivity to data quality (e.g., full-length transcript coverage) and potential biases from model assumptions (e.g., steady-state in transient processes).

Example:‌ In pancreatic development data, positive velocity for Cpe marks upregulation driving β-cell differentiation, while negative velocity for Adk indicates ductal cell transition. Projecting velocity vectors onto UMAP embeddings visualizes differentiation paths.

1人评论了“RNA Velocity-RNAVelocity”

  1. ‌RNA Velocity(RNA速率)‌
    ‌RNA Velocity‌ 是一种基于单细胞RNA测序(scRNA-seq)数据的计算方法,用于预测细胞状态的动态变化,揭示细胞分化、转分化或激活等生物学过程的方向和速度。

    ‌核心概念‌
    ‌原理‌

    通过比较未剪接(unspliced,前体mRNA)和已剪接(spliced,成熟mRNA)的RNA比例,推断基因表达的‌瞬时变化趋势‌。
    ‌正向速度‌(未剪接↑ → 基因表达将增强);‌负向速度‌(未剪接↓ → 基因表达将减弱)。
    ‌关键假设‌

    基因表达变化受转录、剪接和降解速率共同调控,且这些过程存在时间延迟。
    ‌应用场景‌
    ‌细胞命运预测‌
    揭示干细胞分化轨迹(如从造血干细胞到不同血细胞谱系)。
    ‌疾病机制研究‌
    追踪肿瘤细胞亚群的演化或免疫细胞激活路径。
    ‌发育生物学‌
    解析胚胎发育中细胞类型转换的动态过程。
    ‌技术挑战‌
    ‌数据噪声‌:需高质量scRNA-seq数据,避免技术偏差影响速度估计。
    ‌算法限制‌:现有工具(如Velocyto、scVelo)对复杂轨迹的解析仍需优化。

发表评论

您的邮箱地址不会被公开。 必填项已用 * 标注

滚动至顶部